
Discussion notes are not the official viewpoints of the National Bank of Slovakia. They present the views of Analysts of the 
Monetary, Statistics and Research Departments, respectively. Dissemination is allowed without prior approval, but with 
specifying the source "UMS analysts". 

 
© All rights reserved. 1 DISCUSSION NOTE NO. 57, SEPTEMBER 20,  2018 

 

Discussion note 
 

 
Putting new fan-charts into use  
 
 
Due to uncertainty surrounding point forecasts, many central banks nowadays calculate and officially 
publish prediction intervals (in the form of fan-charts) for key macroeconomic variables in order to 
express and communicate perceived forecast risks to professionals and the general public.1 Gaussian 
prediction bands have become a workhorse in fan-chart modelling.2 Apart from being intuitive and 
easy to calculate, Gaussian-like prediction bands suffer from several shortcomings, which make them 
inconsistent (from the econometric standpoint) and unreliable (from the policy standpoint). A new 
system of fan-charts, based on empirical quantiles, is briefly discussed in this note. 
 
 

Traditional approach 

The Gaussian intervals are given by 
 

��ℎ� = ���	�ℎ� − ��  ���ℎ�, ��	�ℎ� + ��  ���ℎ��,    (1) 
 
where ��	�ℎ� denotes a point forecast made at time � with a forecast horizon ℎ.  ���ℎ�	represents the 
ℎ-step ahead root mean squared forecast error (RMSFE) calculated from historical forecast errors and 
�� is the �-th quantile (critical value) of the standard normal distribution (0.5 < � < 1). 
 
The list of issues associated with Gaussian-like prediction bands includes: 
 

• Outliers: The standard RMSFE is not robust to outlying observations (see Maronna, 2006, 
Ch. 2). It means that even a single aberrant observation inflates ��	�ℎ� and, thus, the width of 
the prediction bands, despite the fact that the probability of such an event occurring is out of 
the maximum probability coverage (say, 90 %) for prediction bands. 

   
• Dependence: The standard RMSFE is not a consistent measure of uncertainty for (weakly) 

dependent forecast errors (see Hamilton, 1994, Ch. 10). ���ℎ� underestimates the true value 
of ��ℎ� and the bias increases with the forecast horizon ℎ (due to increasing persistence in 
forecast errors).  

   
• Distribution: The underlying assumption of normality of historical forecast errors seems to 

be at odds with empirical evidence (see Vavra, 2018). This implies that the use of the 
standard normal critical value �� in (1) is questionable. 

 
Empirical evidence suggests that the traditional approach may systematically overestimate or 
underestimate the width of prediction bands, depending on the distributional properties and 
persistence of forecast errors (see Elder et al., 2005). It is worth remarking here that the same 
arguments apply to the so-called two-piece (asymmetric) Gaussian prediction bands, an alternative 
approach which takes into account unbalanced risks of the future development of exogenous factors.3  

 

                                           

1 Hammond (2012) surveys the (inflation) reports of 27 central banks out of which 20 banks provide prediction intervals 
officially. 
2 See, e.g., Bank of Canada, Sveriges Riksbank, Norges Bank, Czech National Bank, European Central Bank. 
3 See, e.g., Bank of England, National Bank of Slovakia, South African Reserve Bank, International Monetary Fund, World Bank. 
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Quantile approach 

Rather than focusing on fixing the above mentioned drawbacks of Gaussian-like prediction bands, we 
follow Tulip and Wallace (2012) and construct prediction bands using empirical quantiles of marginal 
distributions of historical forecast errors. Empirical quantiles are easy to calculate, robust to 100�1 −
�)% contamination of forecast errors with outliers and, much more importantly, are consistent 
estimates even for (weakly) dependent observations under mild regularity conditions (see Theorem 1 
in Psaradakis and Vávra, 2015). In addition, implicitly assumed symmetry of the marginal distribution 
of forecast errors is a much weaker condition compared to normality (see Vávra, 2018). As a result, all 
the above mentioned shortcomings of the Gaussian-like prediction bands are (theoretically) solved 
when using empirical quantiles.  

However, due to the limited number of observations (less than 30 in the case of NBS), we make one 
modification of Tulip and Wallace's approach. Rather than relying on (raw) empirical quantiles, we 
calculate expected quantiles using a sieve bootstrap. 

The bootstrap procedure is summarized in the following steps: 

Step 1: Let {��, . . . , ��} denote a set of forecast errors for a particular variable and a given 
forecast horizon ℎ. 

Step 2: Select an appropriate lag order � of an AR model using the Bayesian information 
criterion, where the lag order is restricted by 0	 ≤ 	�	 < 	log	$, where $	denotes the sample 
size of forecast errors. Estimate the unknown AR(�) model parameters by the OLS method. 

Step 3: Construct a sequence of the estimated residuals {%'̂}()*+�,  by the recursion 

%'̂ = �' − -̂ − ∑ /012
3)� �'43 ,			for		 7	 = 	� + 1,… , $. 

Under the null hypothesis of marginal symmetry of forecast errors (see Tulip and Wallace, 
2012), we transform the estimated residuals to ensure their marginal symmetry (around 
zero). 

%'9 = 	 : ;%'̂ 				for			7	 = 	� + 1,… , $,
−;%'̂4�+2			for			7	 = 	$ + 1,… ,2$ − �. 

The scaling parameter ; = =�$ − ��/�$ − 2� − 1� compensates for deflation of residuals due 

to fitting an AR(�) model (see Stine, 1987). 

Step 4: Draw a sample of residuals {%'∗@ }()�,+�AA from the smoothed distribution function of the 
symmetrized residuals. The bandwidth parameter recommended in Hansen (2004) is used for 
smoothing the residual CDF. 

Step 5: Generate bootstrap replicates {�'∗}()�,+�AA by the recursion 

�'∗ =B/01
2

3)�
�'43∗ + %'∗@ , 

where the process is initiated by a vector of sample averages: C�42+�∗ , … , �A∗D = ��E, … , �E�. The 

first 100 data points are then discarded in order to eliminate start-up effects and the 
remaining $ data points are used.  

Step 6: Repeat Steps 4 - 5 independently F times to get a sample of bootstrap quantiles 
{GH,I∗J : L = 1,… , F}. The sample quantile is calculated as G�∗J = ��M�∗  using the N-th order statistic 

from the bootstrap sample with N	 = 	 ⌈$�⌉. Then, the bootstrap-based expected quantile is just 
a sample average calculated over all F replications G�∗EEE = F4�∑ G�,0∗JQ3)� . 

Finally, denoting the bootstrap-based quantiles for different forecast horizons by G�∗EEE�ℎ�, the proposed 
prediction bands are calculated by  

�∗�ℎ� = ���	�ℎ� − G�∗EEE�ℎ�, ��	�ℎ� + G�∗EEE�ℎ��,    (2) 
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for 0.5 < � < 1 and ℎ ∈ {1,2, . . . , S}.  
Consistency of the bootstrap-based prediction bands follows from Bickel and Buhlmann (1999). An 
important question is to what extent the AR-sieve bootstrap works for stochastic processing not 
stemming from the Wold representation. Bickel and Buhlmann (1997) explain that the closure of the 
Wold representation is fairly large. It means that for any non-linear stochastic process there exist 
another process in the closure of linear processes having identical sample paths with probability 
exceeding 0.37. This finding implies that the AR-sieve bootstrap is very likely to give satisfactory 
results even for stochastic processes deviating from the Wold representation. 

 

Example  

In this section, we apply the above described bootstrap approach to the NBS forecast errors for HICP 
inflation and real GDP growth. Calculated fan-charts are depicted in Figure 1. We set the forecast 
horizon ℎ ∈ {1,2, . . . ,8} and � ∈ {0.65, 0.80, 0.95}	which corresponds to prediction intervals with 30%, 
60%, and 90% probability coverage. The black lines indicate the NBS point forecasts for HICP 
inflation and real GDP growth for the period 2018 Q2 - 2020 Q1. The number of bootstrap replications 
is set to F	 = 	1000. Using a larger number of bootstrap replications does not change the results 
significantly (see Davison and Hinkley, 1997, pp. 155-156). The lag order of AR sieve approximation is 
set to �	 = 	2. It is important to point out that the same approach can be used to calculate (historical) 
data uncertainty of real GDP growth caused by statistical revisions. 

 

Figure 1: fan-charts over the projection horizon  

 

 

 
 

(a) HICP inflation 
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(b) Real GDP growth 
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